
Real World Experience: Gil Clark

Using Nexus to build a more efficient software
supply chain
A discussion with Gil Clark (former Software Architect, Intuit)

At a Sonatype User Group in Palo Alto, CA, Karen Gardner, CMO of Sonatype,

interviewed Gil Clark (now formerly a Software Architect for the Payments Divi-

sion at Intuit) about his experiences with fast-paced software development and

using Sonatype’s Nexus Repository Manager and Nexus Lifecycle (formerly Com-

ponent Lifecycle Management - CLM). Here are excerpts from that discussion.

Gardner: What are your development priorities at Intuit?

Clark: It’s really to deliver more features faster with quality. Intuit is a very

competitive place. We’ve got to deliver a lot of features. The product managers

are pounding on the teams to get stuff out. Bottom line is we’ve got to get out

features as fast as we can but they have to work really well.

Gardner: Tell me about the development challenges you’ve faced.

Clark: In the past, developers had the freedom to do a lot (without standards)

and did too many things in many different ways. It was a great system but it

didn’t favor convention. All of our artifacts were checked in and we had no

way of knowing their pedigree. It was just all JARS. We had other different

applications and services and almost every one was built a different way. That

was untenable; too many mistakes were being made. Stuff wasn’t getting into

production quickly enough. We weren’t able to test it automatically.

Gardner: How have Maven and Nexus helped you get organized?

Clark: I picked Maven to get everybody squared up. Maven forced the con-

vention and, after two years, we do every build exactly the same way over 100

products. We have five DevOps engineers who can dive into any of the 100

projects, know exactly how they work, make the fix, and add the plug-in. That

nexus pro & nexus lifecycle user

Gil Clark

squared up our world. What we also did was put all of our third-party compo-

nents as well as our own into the Nexus repository.

I’ve always liked Nexus. It does a good job. Being able to put all our versions

of our components on the shelf, version them and have them reusable in that

way was huge because it cleaned up some of the huge builds we had. We now

know the pedigree of thousands (of open source components).

Gardner: How else has using Nexus improved productivity?

Clark: Before, we didn’t have a consistent way of getting stuff to the produc-

tion server. Usually it was zipped with no particular organization. Then we

decided to standardize on Red Hat Package Manager (RPM) as a Linux shop.

We always build on RPM, no matter what we’re deploying, whether it’s configu-

ration files, properties files, or libraries.

Nexus has this awesome feature where you deploy it in the usual way like any

other component but you just tag that repository as a yum-supported reposi-

tory. We can manually grab RPMs just by using a normal Nexus download and

we can do a Yum install. That’s been really convenient. It doesn’t matter what

we’re putting in those RPMs.

Gardner: How is Nexus helping you transition to continuous delivery?

Clark: When we decided we were going to do continuous delivery, we picked

a couple products and really ran that through the automated test flow. We

realized that when we got done, we were sitting on a snapshot and you can’t

put that into production. When you check in, you’ve got to have a releasable

component at that moment. Then it goes through your test cycles and then it

goes in the product.

In the Pro version of Nexus, there’s a feature called “staging.” So now anytime

someone checks something in, we publish it as if it was a real full-pledged

releasable component and it goes into staging. That staging form is also

processed, and when we’re done, it can go in production and we can promote

the stage into the real deal later. Or we do it automatically on the fly. If it fails

the test, we throw away the stage and we start all over again. (This process) is

really allowing us to make that transition and still sort of preserve some of the

old ways that we do things.

“

”

I’ve always liked
Nexus. It does a good
job. Being able to
put all our versions
of our components
on the shelf, version
them and have them
reusable in that way
was huge because
it cleaned up some
of the huge builds
we had. We now
know the pedigree of
thousands (of open
source components).

www.sonatype.com

We let the teams be as flexible as they want during the day with snapshots.

Our core services release every two weeks. Then the orchestration services

on top of that might release more frequently because they’re reacting to

UI changes. The JavaScript UI changes might release every day. We used to

promote branch. We promoted the code and then on the promoted branch

you could go to production. Now, we promote the component, which is really

helpful. There’s only one branch that’s a continuous delivery branch.

Gardner: Another priority you’ve mentioned is risk management when using

open source components.

Clark: We’re using tons of open source, probably more than 80%. And we had

a (manual) process when the engineers decided to use a library. They did some

research, they found the function they wanted, they found the library they

wanted to use, then they’d have to go to a database and enter it and check,

“yes, I’ve done due diligence.” That’s it. They didn’t go check the 50,000 depen-

dencies of that thing. They really had no way of checking all the other open

source components that they unintentionally just consumed.

(On one large project) our vice president at that time said, “What? How do

you guys not know what your pedigree is?” He’s a very process-oriented guy.

I wasn’t going to track every single thing down one by one. I knew about

the Sonatype CLM product (now Nexus Lifecycle) and I just said, “Well, that’s

my solution.”

Now that (we are using Nexus Lifecycle), the light bulbs are starting to go off.

Now the chief risk officer is interested and the chief security officer is interest-

ed. The awareness is growing.

Gardner: How does our product help you make better decisions about the

open source you use?

Clark: We tied it into Jenkins. Any Jenkins job that has violations will show up

in Jenkins, and that’s sort of that first flag. That project will get a little icon that

it’s got a problem, and then you can trace that to Jenkins, which traces back to

that project in the Sonatype product. What the product reports to Jenkins is

actionable and that helps. We even promote that alert to our SDLC dashboard

so the director for that project is going to see the flag that’s actionable.

www.sonatype.com

“

”

Nexus has this
awesome feature
where you deploy it
in the usual way like
any other component
but you just tag that
repository as a yum-
supported repository.

www.sonatype.com

The developers have the IDE integration and (if there’s a flag) the lead develop-

er gets a task on their sprint plan. If it’s a critical alert, they don’t get to wait. In

the IDE it will show if there are any alerts attached to a particular version. They

just pick a version that doesn’t have an alert on it. If you modify your POM to

pick a new version, the report changes because dependencies changed. Then

you can look across that whole bill of materials in your project and make sure

there are no threats. You can also configure your Jenkins plug-in to fail a build

if there’s a threat.

Gardner: If your policy prevents you from using something it, you can’t

release it?

Clark: That’s right. The build would fail.

Gardner: So if you were to summarize what you’ve done with our product,

how would you say it has improved your process and the outcomes for your

organization?

Clark: It just works. We got the system installed. We got it running. We mod-

ified our policies. The results show up in Jenkins and people take action and

that’s it. We didn’t have to educate people. We didn’t have to document stuff.

When we do demos internally, we just show the UI. We don’t have to explain a

lot of context because they start to see what’s going on in the product when

they look at it. It’s just that simple. It’s easy to adopt and it just works. I think we

had a day of training. It really is pretty easy to use.

“

”

It’s just that simple.
It’s easy to adopt
and it just works. I
think we had a day of
training. It really is
pretty easy to use.

